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Many-to-many Singing Performance Style Transfer
on Pitch and Energy Contours

Yu-Teng Hsu, Jun-You Wang, and Jyh-Shing Roger Jang

Abstract—Singing voice conversion (SVC) aims to convert the
singer identity of a singing voice to that of another singer. How-
ever, most existing SVC systems only perform the conversion of
timbre information, while leaving other information unchanged.
This approach does not consider other aspects of singer identity,
particularly a singer’s performance style, which is reflected in the
pitch (F0) and the energy (volume dynamics) contours of singing.
To address this issue, this paper proposes a many-to-many singing
performance style transfer system that converts the pitch and en-
ergy contours of one singer’s style to another singer’s. To achieve
this target, we utilize two AutoVC-like autoencoders with an
information bottleneck to automatically disentangle performance
style from other musical contents, one for the pitch contour while
another for the energy contour. Experiment results suggested
that the proposed model can perform singing performance style
transfer in a many-to-many conversion scenario, resulting in
improved singer identity similarity to the target singer.

Index Terms—Singing style transfer, singing voice conversion.

I. INTRODUCTION

Singing voice conversion (SVC) aims to alter the singer
identity of a singing voice to that of another singer while
keeping the musical content unchanged. Previous SVC sys-
tems [1]–[7] have mainly focused on modifying the timbre
of the voice to achieve this goal. However, this approach
simplifies singer identity to the pure timbre information and
does not consider the performance style. Consequently, while
listeners may agree that the audio converted by these SVC
systems sounds like the target singer’s voice, it does not reflect
how the target singer would perform the musical piece.

The underlying problem is that different singers have their
own interpretations of the same musical piece, which affects
the musical expression of the performance [8]. For example,
a singer may choose to use vibrato when singing a long
note or may choose not to. These choices shape the unique
performance style of a singer, which is identifiable by both
humans and machine learning algorithms [9]. In this paper,
we are particularly interested in the performance style man-
ifested in the pitch (fundamental frequency, f0) and energy
(volume dynamics) contours of singing, as they are important
for identifying styles in both singing [9] and instrumental
performances [10]. The task of predicting pitch and energy
contours to synthesize expressive music performances has also
been studied (pitch only: [11]–[13]; energy only: [10]; both:
[14]–[16]). Therefore, during SVC, it is desirable to consider
the transfer of performance styles in terms of pitch and energy
contours. Note that none of the aforementioned works focus
on style transfer (converting existing pitch/energy contours
to another performer’s style), but rather on music synthesis

Fig. 1. The application scenario of the proposed model. Our model can be
combined with a previous SVC model to achieve the conversion of both timbre
and performance style (in terms of pitch and energy contours).

(predicting expressive pitch/energy contours from a musical
score). These synthesis tasks require a transcribed musical
score, whereas performance style transfer does not, which
enables applications when the musical score is not available.

To address this issue, we propose a system that performs
singing performance style transfer on pitch and energy con-
tours in a many-to-many scenario. Our system accepts pitch
and energy contours as inputs and converts their performance
styles to that of a specific target singer. This problem definition
encompasses the use of vibratos, overshoots, preparations [17],
glissandi, and other singing techniques identifiable in pitch
contours, as well as the volume dynamics observable in energy
contours. To the best of our knowledge, this is the first work
that addresses singing performance style transfer on pitch and
energy contours. This system can be integrated with any of
the previous SVC systems to achieve a better conversion in
terms of overall singer identity, as illustrated in Figure 1.

Drawing inspiration from AutoVC [18], we employ au-
toencoders with an information bottleneck to disentangle
performance style from musical content within pitch and
energy contours (e.g., note pitches and the dynamics caused
by pronouncing different phonemes). The proposed system
contains two autoencoders: one for converting the pitch con-
tour and the other for the energy contour. Experiment results
show that integrating an SVC model with the proposed style
transfer model further improves the perceptual similarity of
the converted audio to the target singer’s singer identity.
The source code is available at https://github.com/poohhsu/
Singing-Performance-Style-Transfer.

II. METHODS

The proposed singing performance style transfer system
consists of two main components: a pitch conversion model
and an energy conversion model, which are optimized sep-
arately. An overview of the proposed system is shown in
Figure 2. The system takes as input a pitch contour p ∈ Rm

and a log-scale energy contour e ∈ Rm, both with m frames
and a sampling rate of 200 Hz, along with a target singer ID.
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Fig. 2. The overview of the proposed system. Down and Up denote
downsampling and upsampling, respectively. During inference, we first run
the pitch conversion model (a), and then the energy conversion model (b) in
a cascading manner.

It then converts the performance styles of p and e to those
of the target singer. This system operates in a many-to-many
scenario, meaning it can convert p and e to the performance
styles of a fixed set of singers seen during model training.

A. Pitch Conversion
As shown in Figure 2 (a), the proposed pitch conversion

model is an AutoVC-like autoencoder with an information
bottleneck [18]. It consists of an encoder, a decoder, and a
trainable singer embedding lookup table (LUT). The model
takes p and a target singer ID as input for style transfer.

Pre-processing. We first convert p to a pitch embedding
pe ∈ Rm×72, where each pitch value is represented by a 72-
dimensional vector. Each element of the vector corresponds
to an integer MIDI number from C1 (32.7 Hz) to B6 (1975.5
Hz). For pitch values that do not equal integer MIDI numbers,
we use linear interpolation to calculate their embeddings. This
pre-processing is applied to each frame of p to obtain pe.

Encoder. The encoder processes the pitch embedding pe
with a 1-D convolution layer with a kernel size of 11. The
output is then passed through 4 residual blocks [19], each com-
prising 2 1-D convolution layers with a kernel size of 5. Each
convolutional layer is followed by group normalization [20]
and a ReLU activation function, denoted as ConvNorm in
Figure 2 (a). The output is then fed into a BiLSTM layer
with an output dimension of 2 for each direction. Finally, a
downsampling operation is performed to form an information
bottleneck, with a downsampling rate of 128. This results in
an information bottleneck of 6.25 dimensions per second.

Decoder. The decoder takes both the encoding produced by
the encoder and a singer embedding from the LUT as input. It
upsamples both inputs to match the original frame number of
pe and concatenates them. Similar to the encoder, the decoder
processes the concatenated features with a 1-D convolution
layer, 4 residual blocks, and a BiLSTM layer. Finally, a linear
layer is applied to generate the output p̂e ∈ Rm×72.

Post-processing. To convert p̂e back to the pitch contour
prediction p̂ ∈ Rm, following CREPE [21], we calculate
a weighted average of the associated MIDI number of each
element according to the output p̂e.

Loss functions. Similar to AutoVC [18], the model is
trained to reconstruct the original input (p and pe) by feeding

the corresponding singer ID as the target singer ID. The loss
function consists of two main components. The first is the
pitch reconstruction loss Lp

Recon, defined as:

Lp
ReconE = BCE(pe, p̂e),

Lp
ReconC = RMSE(p, p̂),

Lp
Recon = λp

ReconEL
p
ReconE + λp

ReconCL
p
ReconC,

(1)

where BCE denotes the binary cross-entropy loss, and RMSE
denotes the root mean square error loss. The superscript p
indicates that these loss terms are used to train the pitch
conversion model. The weighting factors λp

ReconE and λp
ReconC

are empirically set to 1 and 10, respectively.
Furthermore, to encourage the model to learn vibrato-related

features, which are particularly important for performance
styles [9], [11], [13]. we include the second component,
namely the vibrato loss Lp

Vib, in our loss function. Follow-
ing [22], given the ground-truth pitch contour p and the
predicted pitch contour p̂, we first perform a sharpening
operation on them to isolate vibratos (similar to [11], [22]).
We then extract two sets of features from the sharpened
pitch contours for computing loss functions. The first is their
corresponding Short-time Fourier Transform (STFT) power
spectrograms (denoted as pFT and p̂FT, respectively). The
second is the vibrato extent (amplitude) contours pVibExt and
p̂VibExt that represent frame-wise vibrato amplitudes of the
pitch contours. The methods to extract these features are
similar to [22], detailed as follows:

psharp = p− sinc(i) ∗ p,
pFT = STFT(psharp),

pVibExt = vib frame max(pFT),

(2)

where ∗ denotes convolution, i denotes the frame index,
sinc denotes the sinc function, vib frame max denotes the
frame-wise maximum operation applied to the frequency bins
between 5 and 8 Hz, which is the typical frequency range of
vibratos. Similarly, we obtain p̂VibExt and p̂FT from p̂. The
vibrato loss is then computed as follows:

Lp
FT = RMSE(pFT, p̂FT),

Lp
VibExt = RMSE(pVibExt, p̂VibExt),

p̂IsVib = Thresholding(p̂VibExt, thresp),

p̂VibDiff = Diff(p̂VibExt)× p̂IsVib,

Lp
Smooth = RMS(p̂VibDiff),

Lp
Vib = λp

FTL
p
FT + λp

VibExtL
p
VibExt + λp

SmoothL
p
Smooth,

(3)

where Thresholding is a function that operates on each
element of p̂VibExt except the last one. For index i, it outputs 1
if both the i-th element p̂(i)

VibExt and the (i+1)-th element p̂(i+1)
VibExt

are larger than a given threshold thresp; otherwise, it outputs
0. We set thresp to 0.75, which determines whether a frame
contains vibrato. Diff denotes first-order difference, and RMS
denotes the root mean square function. The weighting factors
λp

FT, λp
VibExt, and λp

Smooth are all set to 0.1 empirically.
Finally, the total loss Lp is set to the sum of the pitch

reconstruction loss Lp
Recon and the vibrato loss Lp

Vib.
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B. Energy Conversion

The proposed energy conversion model is depicted in Fig-
ure 2(b). It takes as input the energy contour e, a target singer
ID, and the pitch contour p̂, which is obtained by converting p
to the target singer’s style using the pitch conversion model de-
scribed earlier. The model then converts the performance style
of e to that of the target singer. In other words, the proposed
model works in a cascading manner during inference time.
During training, we provide the ground-truth pitch contour p
to the energy conversion model as side information.

Pre-processing. We convert the input log-scale energy con-
tour e into an energy embedding ee ∈ Rm×128. Specifically,
we define the energy range of interest from 10−4 to 1 and
divide this range into 128 logarithmically spaced bins. We
then apply linear interpolation to convert each value in e to
this 128-dimensional embedding.

Model architecture. The encoder architecture is identical
to that of the pitch conversion model. As for the decoder, the
only difference is that we concatenate p̂ with other features
after the upsampling layer, as illustrated in Figure 2(b).

Loss functions. The loss functions are the same as those
used for the pitch conversion model (see Equation 1, 2, and 3
for more details). The weighting factors for the energy loss
Le, λe

ReconE, λe
ReconC, λe

FT, λe
VibExt, and λe

Smooth, are empirically
set to 1, 10, 0.01, 0.01, and 0.01, respectively. The threshold
threse that determines the presence of vibratos is set to 20.

III. EXPERIMENT SETUP

A. Datasets

We use three datasets in our experiments: M4Singer [23],
Opencpop [24], and TONAS [25]. M4Singer contains 29.8
hours of Mandarin pop music sung by 20 singers. Opencpop
consists of 5.2 hours of Mandarin pop music sung by one
singer. TONAS includes 0.34 hours of a cappella singing in
the Flamenco style. In total, our training data comprises 22
singers (20 from M4Singer, 1 from Opencpop, and 1 from
TONAS). For data partitioning, we use an 8:1:1 partition at
the song level for M4Singer and TONAS. For Opencpop, we
follow the official train/test split and divide the training data
into training and validation sets with an 8:1 ratio at song level.

B. Implementation Details

We resample audios to 16 kHz and use CREPE [21] to
extract pitch contours with a window size of 1024 and a hop
size of 80. The same parameters are used to compute energy
contours. We set the dimensionality of all hidden layers and
singer embeddings to 128. The model is trained for 400,000
steps with a batch size of 16, using the AdamW optimizer with
a learning rate of 10−4 and a weight decay of 10−4. During
training, we apply data augmentation by randomly transposing
the pitch contour within the range of C1 and B6.

C. Evaluation Methods and Baselines

We conducted both objective and subjective evaluations in
the experiments. For the objective test, we trained two modi-
fied ResNetSE34L speaker verification systems [26] for singer

verification on pitch and energy contours, respectively. We
changed the input from waveforms to pitch/energy embeddings
and replaced all 2D convolutions with 1D convolutions. We
used the training sets of M4Singer, Opencpop, and TONAS
to train the two models from scratch with the AM-Softmax
loss [27]. During evaluation, we used the trained models to ex-
tract fixed-dimensional singer embeddings from pitch/energy
contours. We then computed the cosine similarity between the
embeddings of the converted pitch/energy contours and the
average singer embedding of the target singer’s pitch/energy
contours extracted by the same model. A higher similarity
means that the pitch/energy contours are more similar to the
target singer’s style.

For the subjective test, we focus on the effectiveness of the
proposed style transfer model when integrated into an SVC
model, which we consider the main application scenario of
the proposed model. We employ Diff-SVC (https://github.com/
prophesier/diff-svc), a popular any-to-one SVC model based
on diffusion mechanisms, in the evaluation. In each test, we
compare two settings: 1) using Diff-SVC for timbre conversion
without any modification (denoted as Baseline SVC), and
2) using Diff-SVC for timbre conversion while replacing the
pitch and energy contours with those converted by (one of) our
performance style transfer model to the target singer’s style.
Figure 1 shows the comparison of the two settings.

Since Diff-SVC is an any-to-one SVC model, we selected
four target singers (Opencpop’s only singer, M4Singer’s Alto-
1, Tenor-3, and Tenor-7) to train their own Diff-SVC model.
We then conducted a comparative mean opinion score (CMOS)
[28] test. For each question, participants were asked to listen
to two converted audio clips and one clip of the target singer.
Then, they were asked to rate their relative preference between
the two converted audios based on naturalness and similarity
to the performance style of the target singer. The CMOS scale
ranges from -3 to 3.

Baseline models: As there is no previous work with the
same problem definition, we created three more baselines for
comparison, including 1) Source: the unconverted (source)
pitch/energy contours, which serve as a lower bound; 2)
Proposed w/o cascade: an ablation of the proposed model
where the converted pitch contour is not provided to the energy
conversion model (i.e., not cascading the two models), which
may cause inconsistency between the two converted contours;
and 3) Vib-scaling: a simple baseline that computes the vibrato
statistics (mean and variance) of each singer in the training
data and uses these statistics to scale the vibrato amplitudes
of the pitch/energy contours during inference.

IV. RESULTS

A. Objective Results
In the objective test, we evaluated three models: Proposed,

Proposed w/o cascade, and Vib-scaling. Additionally, we
used the target singer’s pitch and energy contours as an upper
bound, denoted as Target. Specifically, we randomly selected
2 audio clips for each source-target pair, which leads to
22× 21× 2 = 924 audio clips.

Table I presents the objective results. Compared to Source,
Proposed improved singer embedding similarity in both pitch
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TABLE I
OBJECTIVE EXPERIMENT RESULTS IN TERMS OF COSINE SIMILARITY.

Model Pitch Energy
Source 0.226 0.295

Vib-scaling 0.283 0.292
Proposed w/o cascade 0.435 0.402

Proposed 0.435 0.414
Target 0.555 0.681

TABLE II
A DETAILED VIEW OF OBJECTIVE EXPERIMENT RESULTS. THE SINGERS
ARE SEPARATED TO “FLA” (FLAMENCO) AND “MAN” (MANDARIN POP)

BASED ON THEIR SPECIFIC PERFORMANCE STYLES, WITH THE OBJECTIVE
SIMILARITIES BEING REPORTED SEPARATELY.

Model Pitch Energy
Fla↔Man Man↔Man Fla↔Man Man↔Man

Source -0.054 0.254 0.191 0.306
Proposed 0.478 0.431 0.333 0.423

and energy contours, indicating that the proposed model is
capable of performing performance style transfer. However,
a clear difference remains between Proposed and Target,
suggesting that there is still much room for improvement.
In comparing Proposed with Proposed w/o cascade, Pro-
posed slightly outperformed Proposed w/o cascade in energy
contour similarity, showing the effectiveness of incorporating
pitch contours into the energy conversion model. Finally, Pro-
posed outperformed Vib-scaling considerably. This indicates
that even with the added loss term to emphasize vibrato com-
ponents, the proposed system did not reduce to only modifying
vibratos (though it does modify vibratos; see Section IV-C).
Instead, it achieved better performance by considering and
converting various aspects of performance styles.

To examine the performance of the proposed model un-
der different degrees of performance style transfer, we fur-
ther computed separate objective results on performance
style transfer for two cases: 1) between the Flamenco
singer (TONAS) and Mandarin pop singers (M4Singer and
Opencpop), and 2) within Mandarin pop singers. The former
represents a larger degree of style transfer, while the latter
represents a smaller degree of style transfer. Table II shows
that in both cases, Proposed is capable of achieving improved
objective similarities.

B. Subjective Results

We conducted two subjective tests: one comparing Baseline
SVC with Proposed, and the other comparing Baseline SVC
with Proposed w/o cascade. We recruited 10 participants,
each of whom was asked to rate 12 audio pairs anonymously.
All participants understood and agreed that their responses
would be used solely for this research. The results are
presented in Table III. Regarding singer identity similarity,
Proposed outperformed Baseline SVC significantly (p ≈
0.017), indicating that the proposed model leads to improved
perceptual singer similarity. Interestingly, although Proposed
w/o cascade outperformed Source in the objective test, it
performed significantly worse than Baseline SVC in subjective
similarity (p ≈ 0.040). We suspect that the inconsistency

TABLE III
SUBJECTIVE CMOS EXPERIMENT RESULTS.

Model Similarity Naturalness
Baseline SVC 0.00 0.00

Proposed w/o cascade -0.25 ± 0.28 -1.31 ± 0.28
Proposed +0.34 ± 0.32 -1.23 ± 0.29

Fig. 3. A pitch conversion example using Proposed. The amplitude of
vibratos is largely reduced, which aligns with the performance style of the
target singer Opencpop, who seldom sings vibratos with large amplitudes.

between the pitch and energy contours in Proposed w/o
cascade heavily affects human perception of performance
style. As a result, human raters tend to perceive the singer
identity of Proposed w/o cascade as dissimilar to that of the
target singer.

Regarding naturalness, Baseline SVC significantly outper-
formed both Proposed and Proposed w/o cascade (both
p < 10−13). This reflects a side effect of modifying the
pitch and energy contours, which leads to a degradation in
naturalness. Future work could focus on alleviating this issue.

C. Case Study

To understand how the proposed performance style transfer
model actually does, we visualize an example in Figure 3. In
this case, the source audio from the TONAS dataset contains
clear vibratos, a characteristic feature of Flamenco singing.
The target singer from the Opencpop dataset, however, seldom
uses vibratos with large amplitudes. The proposed model
successfully captured this difference in performance style and
modified the pitch contour to reduce the amplitude of vibratos.
As a result, the performance style of the converted pitch
contour aligns better with that of Opencpop. This is also
reflected in the objective result, as the pitch contour similarity
to Opencpop’s average singer embedding increases from
-0.205 (source) to 0.146 (converted using Proposed).

V. CONCLUSION

We propose the first many-to-many singing performance
style transfer system that focuses on the style transfer of
pitch and energy contours. The task is decomposed into pitch
conversion and energy conversion, with two models trained
to address these aspects. Using an AutoVC-like architecture
and incorporating pitch contour as side information for the
energy conversion model, experimental results demonstrate
that the proposed model can successfully perform style transfer
in a many-to-many scenario. For future work, we plan to
adopt other disentangled representation learning methods and
increase the dataset scale to further improve performance.
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